
leap.mail Documentation
Release 0.4.0

Kali Kaneko

Sep 27, 2017

Contents

1 How does this all work? 3

2 Data model 5

3 Documentation index 7
3.1 Hacking . 7
3.2 API documentation . 10

4 Indices and tables 13

i

ii

leap.mail Documentation, Release 0.4.0

decentralized and secure mail delivery and synchronization

This is the documentation for the leap.mail module. It is a twisted package that allows to receive, process, send
and access existing messages using the LEAP platform.

One way to use this library is to let it launch two standard mail services, smtp and imap, that run as local proxies and
interact with a remote LEAP provider that offers a soledad syncronization endpoint and receives the outgoing email.
This is what Bitmask client does.

From the release 0.4.0 on, it’s also possible to use a protocol-agnostic email public API, so that third party mail clients
can manipulate the data layer. This is what the awesome MUA in the Pixelated project is using.

Contents 1

https://twistedmatrix.com/trac/
https://leap.se/en/docs
https://bitmask.net/en/features#email
https://pixelated-project.org/

leap.mail Documentation, Release 0.4.0

2 Contents

CHAPTER 1

How does this all work?

All the underlying data storage and sync is handled by a library called soledad, which handles encryption, storage and
sync. Based on u1db, documents are stored locally as local sqlcipher tables, and syncs against the soledad sync
service in the provider.

OpenPGP key generation and keyring management are handled by another leap python library: keymanager.

See the life cycle of a leap email for an overview of the life cycle of an email through LEAP providers.

3

https://leap.se/en/docs/design/soledad
https://en.wikipedia.org/wiki/U1DB
https://github.com/leapcode/keymanager/

leap.mail Documentation, Release 0.4.0

4 Chapter 1. How does this all work?

CHAPTER 2

Data model

The data model at the present moment consists of several document types that split email into different documents that
are stored in Soledad. The idea behind this is to keep clear the separation between mutable and inmutable parts, and
still being able to reconstruct arbitrarily nested email structures easily.

5

leap.mail Documentation, Release 0.4.0

6 Chapter 2. Data model

CHAPTER 3

Documentation index

Hacking

Some hints oriented to leap.mail hackers. These notes are mostly related to the imap server, although they probably
will be useful for other pieces too.

Don’t panic! Just manhole into it

If you want to inspect the objects living in your application memory, in realtime, you can manhole into it.

First of all, check that the modules PyCrypto and pyasn1 are installed into your system, they are needed for it to
work.

You just have to pass the LEAP_MAIL_MANHOLE=1 enviroment variable while launching the client:

LEAP_MAIL_MANHOLE=1 bitmask --debug

And then you can ssh into your application! (password is “leap”):

ssh boss@localhost -p 2222

Did I mention how awesome twisted is?? :)

Profiling

If using twistd to launch the server, you can use twisted profiling capabities:

LEAP_MAIL_CONFIG=~/.leapmailrc twistd --profile=/tmp/mail-profiling -n -y imap-server.
→˓tac

--profiler option allows you to select different profilers (default is “hotshot”).

7

leap.mail Documentation, Release 0.4.0

You can also do profiling when using the bitmask client. Enable the LEAP_PROFILE_IMAPCMD environment flag
to get profiling of certain IMAP commands:

LEAP_PROFILE_IMAPCMD=1 bitmask --debug

Offline mode

The client has an --offline flag that will make the Mail services (imap, currently) not try to sync with remote
replicas. Very useful during development, although you need to login with the remote server at least once before being
able to use it.

Mutt config

You cannot live without mutt? You’re lucky! Use the following minimal config with the imap service:

set folder="imap://user@provider@localhost:1984"
set spoolfile="imap://user@provider@localhost:1984/INBOX"
set ssl_starttls = no
set ssl_force_tls = no
set imap_pass=MAHSIKRET

Running the service with twistd

In order to run the mail service (currently, the imap server only), you will need a config with this info:

[leap_mail]
userid = "user@provider"
uuid = "deadbeefdeadabad"
passwd = "foobar" # Optional

In the LEAP_MAIL_CONFIG enviroment variable. If you do not specify a password parameter, you’ll be prompted
for it.

In order to get the user uid (uuid), look into the ~/.config/leap/leap-backend.conf file after you have
logged in into your provider at least once.

Run the twisted service:

LEAP_MAIL_CONFIG=~/.leapmailrc twistd -n -y imap-server.tac

Now you can telnet into your local IMAP server and read your mail like a real programmer™:

% telnet localhost 1984
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

* OK [CAPABILITY IMAP4rev1 LITERAL+ IDLE NAMESPACE] Twisted IMAP4rev1 Ready
tag LOGIN me@myprovider.net mahsikret
tag OK LOGIN succeeded
tag SELECT Inbox

* 2 EXISTS

* 1 RECENT

* FLAGS (\Seen \Answered \Flagged \Deleted \Draft \Recent List)

* OK [UIDVALIDITY 1410453885932] UIDs valid

8 Chapter 3. Documentation index

leap.mail Documentation, Release 0.4.0

tag OK [READ-WRITE] SELECT successful
^]
telnet> Connection closed.

Although you probably prefer to use offlineimap for tests:

offlineimap -c LEAPofflineimapRC-tests

Minimal offlineimap configuration

You can use this as a sample offlineimap config file:

[general]
accounts = leap-local

[Account leap-local]
localrepository = LocalLeap
remoterepository = RemoteLeap

[Repository LocalLeap]
type = Maildir
localfolders = ~/LEAPMail/Mail

[Repository RemoteLeap]
type = IMAP
ssl = no
remotehost = localhost
remoteport = 1984
remoteuser = user
remotepass = pass

Testing utilities

There are a bunch of utilities to test IMAP delivery in imap/tests folder. If looking for a quick way of inspecting
mailboxes, have a look at getmail:

./getmail me@testprovider.net mahsikret
1. Drafts
2. INBOX
3. Trash
Which mailbox? [1] 2
1 Subject: this is the time of the revolution
2 Subject: ignore me

Which message? [1] (Q quits) 1
1 X-Leap-Provenance: Thu, 11 Sep 2014 16:52:11 -0000; pubkey="C1F8DE10BD151F99"
Received: from mx1.testprovider.net(mx1.testprovider.net [198.197.196.195])
(using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits))
(Client CN "*.foobar.net", Issuer "Gandi Standard SSL CA" (not verified))
by blackhole (Postfix) with ESMTPS id DEADBEEF
for <me@testprovider.net>; Thu, 11 Sep 2014 16:52:10 +0000 (UTC)
Delivered-To: 926d4915cfd42b6d96d38660c04613af@testprovider.net
Message-Id: <20140911165205.GB8054@samsara>
From: Kali <kali@leap.se>

3.1. Hacking 9

leap.mail Documentation, Release 0.4.0

(snip)

IMAP Message Rendering Regressions

For testing the IMAP server implementation, there is a litte regressions script that needs some manual work from your
side.

First of all, you need an already initialized account. Which for now basically means you have created a new account
with a provider that offers the Encrypted Mail Service, using the Bitmask Client wizard. Then you need to log in with
that account, and let it generate the secrets and sync with the remote for a first time. After this you can run the twistd
server locally and offline.

From the leap.mail.imap.tests folder, and with an already initialized server running:

./regressions_mime_struct user@provider pass path_to_samples/

You can find several message samples in the leap/mail/tests folder.

Debugging IMAP commands

Use ngrep to obtain logs of the commands:

sudo ngrep -d lo -W byline port 1984

To get verbose output from thunderbird/icedove, set the following environment variable:

NSPR_LOG_MODULES="imap:5" icedove

API documentation

If you were looking for the documentation of the leap.mail module, you will find it here.

Of special interest is the public mail api, which should remain relatively stable across the next few releases.

leap.mail package

Subpackages

mail.adaptors package

Subpackages

mail.adaptors.tests package

Submodules

mail.adaptors.tests.test_models module

10 Chapter 3. Documentation index

leap.mail Documentation, Release 0.4.0

mail.adaptors.tests.test_soledad_adaptor module

Submodules

mail.adaptors.models module

mail.adaptors.soledad module

mail.adaptors.soledad_indexes module

leap.mail.imap package

Subpackages

leap.mail.imap.service package

Submodules

leap.mail.imap.account module

leap.mail.imap.mailbox module

leap.mail.imap.messages module

leap.mail.imap.server module

leap.mail.incoming package

Submodules

leap.mail.incoming.service module

leap.mail.outgoing package

Submodules

mail.outgoing.service module

leap.mail.plugins package

Submodules

leap.mail.plugins.soledad_sync_hooks module

leap.mail.smtp package

3.2. API documentation 11

leap.mail Documentation, Release 0.4.0

Submodules

leap.mail.smtp.gateway module

Submodules

leap.mail.constants module

leap.mail.decorators module

leap.mail.interfaces module

leap.mail.load_tests module

leap.mail.mail module

leap.mail.mailbox_indexer module

leap.mail.size module

leap.mail.sync_hooks module

leap.mail.utils module

leap.mail.walk module

12 Chapter 3. Documentation index

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	How does this all work?
	Data model
	Documentation index
	Hacking
	API documentation

	Indices and tables

